A Stirling Approach to the Central Limit Theorem (CLT)
Loading...
Files
Author
Kerchner, Robert
Roach, Bill
Publisher
Washburn University. School of Business
Sponsor
Kaw Valley Bank
Issue Date
January 2007
Rights
Alternative Title
Abstract
Many applied statistics courses do not review a proof of the Central Limit Theorem; they rely on simulations like Galton's Quincunx, and/or sampling distributions to acquaint the students with the Bell Curve. the Bell Curve is there, but students are left asking: 1.) where did the pi come from?, 2.) how did a power function based on e get into the formula? the short answer to that question is "Stirling's Formula for n!." Looking at the accuracy of Stirling's Formula can give students some useful insights into the DeMoivre-LaPlace (binomial distribution) version of the Central Limit Theorem (CLT).